
Graph Convolutional Networks Modifications

Mikhail Salnikov 1 Anastasia Remizova 1 Aleksei Kalinov 1 Mark Griguletskii 1 Igor Markov 1

Abstract

The project focuses on improving the Graph Con-
volutional Networks (GCNs) performance. These
networks became a quite common method for
graph representation learning and are widely used
in a variety of real-world applications. However,
GCNs are typically shallow, with the number of
layers not more than two. Greater depth usually
leads to network overfitting, oversmoothing or
even an inability to learn, where the application
of standard methods like dropout and weight pe-
nalizing does not help. In this work we explore
certain techniques that allow the construction of
deeper networks and preserve the ability of net-
work to train effectively.

1. Introduction
Graph Convolutional Networks(GCNs) are becoming one
of the most crucial tools for graph representation learning.
These neural networks are widely used in a variety of real-
world applications like social recommendation systems, link
prediction, node classification, and many others. However,
the ability of deep graph nets to fit a variety of complex
real-world datasets becomes its potential weakness. Due to
the huge amount of neurons and layers, deep graph neural
networks become so closely fit to the training set that it
becomes impossible to generalize and make predictions for
new data. That is why existing GCNs are typically shallow.
Nowadays, there is an intensive research work conducted
to find the best way to overcome the issue of overfitting in
deep GCNs. For instance, in the work (Rong et al., 2020)
authors propose a novel technique to alleviate overfitting and
over-smoothing of the GCN called DropEdge. The key idea
of this method is to randomly remove a certain number of
edges from the input graph at each training epoch, acting as
a data augmenter and also a message-passing reducer. While
the authors achieve state-of-the-art results, their networks

1Skolkovo Institute of Science and Technology,
Moscow, Russia. Correspondence to: Mikhail Salnikov
<m.salnikov@skoltech.ru>.

Final Projects of the Machine Learning 2020 Course, Skoltech,
Moscow, Russian Federation, 2020.

are still quite shallow, most of the time restricted to 2 layers.
This work is chosen as the backbone for our experiments
as we explore other classic deep learning techniques aimed
at better training and generalization at a higher number of
layers, such as, skip connections and orthogonalization of
weights, as well as a more numerically intensive approach
of weight matrix singular values modification.

The main contributions of this report are as follows:

• We provide a detailed analysis of singular value char-
acteristics of network weights, perform several experi-
ments to decrease overfitting by modification of singu-
lar values and discuss achieved results.

• We demonstrate that skip-connection technique can be
effective at preserving generalization ability of a graph
convolutional network with many layers.

• The number of approaches that did not yield any gain in
generalization ability are presented in order to demon-
strate the peculiarities of the problem and discourage
researchers from chasing unpromising hypotheses.

2. Related work
2.1. Graph Convolutional Networks

Finding their influence in image processing, Graph Convo-
lutional Networks attempt to apply notion of convolution
on the graphs with arbitrary topology. The work on this
topic can be roughly categorized into three main research
directions. Pioneered in (Bruna et al., 2013), the first ap-
proach uses spectral graph theory (Kipf & Welling, 2016) to
analyze and make inference on graphs. The main drawback
of such approach was their poor scalability. To address the
issue spatial-base CGNs were developed (Hamilton et al.,
2017). Due to the way these methods directly aggregate
information from neighbours, they might be incapable of
capturing information from more distant nodes. Sampling
approaches aim to achieve fast graph structure learning by
various node and edge sampling procedures. DropEdge
(Rong et al., 2020) is a most recent example of such ap-
proach where a random number of edges is dropped at each
epoch to promote better resilience to different graph topolo-
gies.

Graph convolutional networks modifications

2.2. Orthogonalization of weights

A global convergence of neural networks is a complex theo-
retical and practical question, concerning weight dynamics,
structures of networks and valleys of hyperparameters. One
of directions that researchers pursue is the choice of initial
values for weights. Orthogonal initialization (Saxe et al.,
2013) has shown to be a crucial step to train deep networks
(Xiao et al., 2018) as the weights with absolute magnitude
of singular values equal to 1 discourage growing or fading
of gradients and speed up convergence (Hu et al., 2020).
Keeping weights orthogonal during training has shown con-
tradictory results (Vorontsov et al., 2017), (Brock et al.,
2016). In this report we explore the topic further.

3. Algorithms & Models
The algorithms and models in use could be found
in the github repository by link https://github.
com/MihailSalnikov/svd4gcn with dependency
on a modified DropEdge model http://github.com/
mousebaiker/DropEdge. All the algorithms used in
the work are the variations of the DropEdge Graph convolu-
tional neural network.

3.1. Graph Convolutional Networks

Typical graph convolutional network (GCN) consists of mul-
tiple layers of convolutions on graph nodes feature matrix
X . This matrix captures information about each node in a
graph. The convolution is performed with respect to graph
adjacency matrix A. The most typical formulation of a layer
is written as a non-linear function:

H l+1 = f(H l, A) = σ(AH lW l), (1)

where W l is a weight matrix for the l-th neural layer and σ
is a non-linear function like the ReLU. However, this layer-
wise propagation rule is usually modified because of two
limitations. First, we add the identity matrix to A to enforce
self loops in the graph. Second, we need to normalize A to
ensure that multiplication with A does not change the scale
of the feature vectors.

f(H l, A) = σ(D−0.5(A+ I)D−0.5H lW l), (2)

where D is a diagonal node degree matrix of A+ I .

In order to capture node information X , the convolution in
the first layer is perfomed on it, i.e. H1 = X . The final
output Hk, where k is number of layers in the convolutional
model can be treated directly as a set of logits for each node
by appropriately setting the dimensions of W k. They can
also be treated as extracted features and passed further down
the pipeline to any differentiable classifier. In our case, the
additional classifier consists of two fully-connected layers.

3.2. DropEdge

DropEdge technique applies the graph edge subsampling on
every epoch. Some edges are discarded and the training is
performed on some subsample of the graph edges. The term
“DropEdge” refers to randomly dropping out certain rate of
edges of the input graph for each training time. There are
several benefits in applying DropEdge for the GCN training.
First, DropEdge can be considered as a data augmentation
technique. By DropEdge, we are actually generating dif-
ferent random deformed copies of the original graph; as
such, we augment the randomness and the diversity of the
input data, thus better capable of preventing over-fitting.
Second, DropEdge can also be treated as a message passing
reducer. In GCNs, the message passing between adjacent
nodes is conducted along edge paths. Removing certain
edges is making node connections more sparse, and hence
avoiding over-smoothing to some extent when GCN goes
very deep. DropEdge either reduces the convergence speed
of over-smoothing or relieves the information loss caused
by it.

3.2.1. TRUNCATED SVD

We try to apply SVD on all fully-connected layers of our
model, except the output one due to its already small rank.
This approach is also called low-rank approximation or
truncated SVD. It takes a layer and decomposes it into
several smaller layers, thus decreasing number of weights
and total number of floating-point operations. SVD exists
for any matrix, and it can be factorized as follows:

A
n×m

= U
n×n
· S
n×m

· V >
m×m

, (3)

where S is a diagonal matrix with non-negative decreasing
singular values on its diagonal. U and V are orthogonal
matrices composed of singular vectors. If we take the r
largest singular values and zero out the rest, we get the best
low-rank approximation of A in terms of both Frobenius
and spectral norms:

Ar = UrSrV
T
r , (4)

The matrix Ar is the r-rank matrix, which has both the
Frobenius and the spectral norm closest to those of A. The
fully-connected layer does the matrix multiplication of its
input by a matrix A and adds a bias b. We just take the SVD
of A and keep only the first r singular values.

Ax+ b = (UrSrV
T
r)x+ b, (5)

We supposed that truncated SVD could help to prevent over-
fitting. For example, we know that application of Principal
Component Analysis to the data can improve the quality of

https://github.com/MihailSalnikov/svd4gcn
https://github.com/MihailSalnikov/svd4gcn
http://github.com/mousebaiker/DropEdge
http://github.com/mousebaiker/DropEdge

Graph convolutional networks modifications

Figure 1. Accuracy of the GCN model on Cora dataset with in-
crease of the number of layers

the model because it solves multicollinearity problem. Low-
rank approximation on weights can do something similar —
reduce variable collinearity between weights. Besides, after
application of truncated SVD we have fewer parameters in
the model which is often the core of overfitting problem.

3.3. Orthogonalization of weights

Orthogonal matrices W are the ones that have their columns
orthogonal to each other, i.e. WTW = I . Their spectrum
follow a nice property of being a unit circle in a complex
plane. If we assume no non-linearity and bias between
layers, than the product Ŵ =

∏k
i=1W

k is essentially com-
puted. If matrices W k are orthogonal, then the resulting Ŵ
is also orthogonal and norm preserving. While Gaussian
initialization of matricesW k that can also be done in a norm-
preserving manner, the resulting spectrum of Ŵ is much less
uniform with many singular values tending to zero. Thus,
multiplication by such matrix is essentially equal to projec-
tion on very low-dimensional manifold. A more detailed
and formal analysis can be found in (Saxe et al., 2013). We
try using orthogonal initialization of weights for DropEdge
model and report our findinding below.

Instead of just initializing weights with orthogonal matrices,
it is possible to constrain them to conform to property of
orthogonality during the whole training procedure. Specif-
ically, a regularizer of type ‖WTW − I‖2 is added to the
loss function for each weight in the network. We conduct
experiments with such modification and state the results in
the further section.

3.4. Skip connections

Deep neural networks often show the following behaviour.
When deeper networks are able to start converging, a degra-
dation problem has been exposed: with the network depth
increasing, accuracy gets saturated (which might be un-
surprising) and then degrades rapidly, as can be seen in 1.
Unexpectedly, such degradation is not caused by overfitting,

and adding more layers to a suitably deep model leads to
higher training error. The degradation (of training accuracy)
indicates that not all systems are similarly easy to optimize.
Let us consider a shallower architecture and its deeper coun-
terpart that adds more layers onto it. There exists a solution
by construction to the deeper model: the added layers are
identity mapping, and the other layers are copied from the
learned shallower model. The existence of this constructed
solution indicates that a deeper model should produce no
higher training error than its shallower counterpart, as in
(He et al., 2015). Implementing these skip layer connections
allows the network to preserve the information from hidden
layer and, as we believe, lower the accuracy saturation.

3.5. Spectral normalization

Introduced in (Miyato et al., 2018) for Generative Adversar-
ial Networks, spectral normalization is a weight normaliza-
tion technique aimed at weight stabilization during training.
In its essence the normalization of weight is done by its

largest singular value W̃ =
W

σ(W)
. As stated in the original

paper, this normalization allows to get Lipschitz-continuity
bounds on the layer transformations that guarantee stable
training. Given that the truncated SVD procedure already
computes the full spectrum of weight matrix, this normal-
ization is effectively done for free in terms of computational
efficiency.

4. Experiments and Results
4.1. Datasets

The Pubmed Diabetes dataset consists of 19717 scien-
tific publications from PubMed database pertaining to di-
abetes classified into one of three classes. The citation
network consists of 44338 links. Each publication in the
dataset is described by a TF/IDF weighted word vector
from a dictionary which consists of 500 unique words.
The README file in the dataset provides more details. It
can be downloaded from https://linqs-data.soe.
ucsc.edu/public/Pubmed-Diabetes.tgz. The
Cora dataset consists of 2708 scientific publications clas-
sified into one of seven classes. The citation network con-
sists of 5429 links. Each publication in the dataset is
described by a 0/1-valued word vector indicating the ab-
sence/presence of the corresponding word from the dictio-
nary. The dictionary consists of 1433 unique words. It
can be downloaded from https://relational.fit.
cvut.cz/dataset/CORA. The CiteSeer dataset con-
sists of 3312 scientific publications classified into one
of six classes. The citation network consists of 4732
links. Each publication in the dataset is described by a
0/1-valued word vector indicating the absence/presence
of the corresponding word from the dictionary. The

https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes.tgz
https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes.tgz
https://relational.fit.cvut.cz/dataset/CORA
https://relational.fit.cvut.cz/dataset/CORA

Graph convolutional networks modifications

Table 1. Parameters for training GCN model. Fixed for all experi-
ments as no substaintial gain has been found with hyper-parameter
search.

Parameter Value

dataset {pubmed, cora, citeseer}
hidden layers variable
size of hidden features 128
epochs 400
optimizer Adam
learning rate 0.01
weight decay 0.005
dropout 0.8

dictionary consists of 3703 unique words. It can be
downloaded from https://linqs-data.soe.ucsc.
edu/public/lbc/citeseer.tgz. The computa-
tions were performed on consumer grade GPU and CPU.

The datasets have public split into training and test batches
which we strictly follow. Additionally, training set is split
into training and validation categories with latter having
500 random nodes and the former being assigned the rest.
Citeseer dataset contains some isolated nodes in the graph.
We include them in both training and test sets as nodes
without any neighbours.

The main metric agreed upon for these datasets and used
throughout the experiment section is accuracy or a rate of
correctly predicted classes in the whole set.

As described in the former section, adjacency matrix of each
graph is modified to include self-loops and is normalized to
preserve the norms of features.

4.2. Training parameters

DropEdge implementation was distributed with default sane
hyper-parameters. We performed hyper-parameter search
during several experiments described below and found no
substantial gain in accuracy. Thus, we fix the parameters
for the whole duration of work. Table (1) summarizes the
resulting parameter set. For all the techniques we explored
in our project, we ran the validation tests 3 times to eliminate
the dependency on the random seed. We ran the validation
tests 100 times for the techniques that involve applying SVD
decomposition.

4.3. SVD tricks

4.3.1. EVALUATION OF PROPERTIES

To understand network properties more thoroughly, the fol-
lowing analysis was performed. The model of consideration
is sequential multilayer GCN (without DropEdge technique)
with input layer, several hidden layers and output layer, all

Figure 2. Singular values plots for cases of successfully trained
and failed to train networks.

of them are GCLs.

Let l be an index of GCL. SVD decomposition was applied
to the weight matrix W l ∈ Rn×m of this layer. Then, for a
fixed r the weight matrix W l was replaced with truncated
SVD approximation of rank r. After that, singular values,
loss and accuracy of the modified model was estimated on
the test dataset.

The described procedure was performed for each r from 1
to the min(n,m) and for each GCL including input layer,
but excluding output layer.

This experiment was performed on Cora dataset.

Singular values can be seen on the Figure 2. In the first case,
with 4 layers, the network was able to learn and achieved
accuracy 0.791 on the test set. In the second, with 6 layers,
it failed with accuracy of only 0.374.

The patterns are similar for other number of layers. For
successfully trained networks, input layer singular values
form ”ladder step” and after the ”step”, they are nearly zero.
Other layers singular values are also close to zero from some
point. Besides, singular values of the layer are generally
higher with the relative number of layer. Therefore, rank
can be reduced without significant changes of the network
weights.

In the case of network which failed to learn, all plots of
singular values have similar form. There are less values
close to zero, especially in case of the input layer.

https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz
https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz

Graph convolutional networks modifications

Figure 3. Accuracy and loss scores of the model with SVD.

4.3.2. ACCURACY WITH SVD

Inception GCN model with default parameters was used.

Original loss and accuracy scores after 400 epochs are 0.6
and 0.84 respectively.

The choice of layers for approximation is a creative process
and requires a large number of experiments. For the chosen
model we found the best solution is truncated Singular Value
Decomposition approximation with rank 3 (instead of 128)
on internal GCN layers in the Inception module. Quality
of model with the low-rank approximation on ”ingc” layer
(input layer) is very sensitive to r, where r – rank. Different
results for different r are represented in figure ??.

However, for great number of layers, SVD does not really
help to fight overfitting, therefore, other techniques were
used.

4.3.3. FINE TUNING AFTER LOW RANK APPROXIMATION

During the working on project was implemented Fine Tun-
ing (FT) after low rank approximation in three ways. First
- FT all network on training set after approximation some
layers. Second - FT all network, but approximate layers
layer by layer, firstly we approximate first hidden layer and
FT it on a few epochs, after that approximate second layer
and etc. Third - FT only approximated layers.

Results for the first way is a small improving accuracy on
test set, similar to above. Accuracy for send way is similar
to first, but we have interesting but not amazing FT history.
After approximation each layer, loss dramatically increased
and accuracy dramatically decreased (figure 4).

Figure 4. Second FT way accuracy and loss training history

Third way (figure 5) allow us to increase score for GCN
network on Citeseer, CORA and pubmed datasets too, but
not more that first and second way.

Figure 5. Third FT way accuracy and loss training history

Figure 6. Validation accuracy for SC, InoutSC and vanilla Multi-
GCN

Figure 7. Gradient norms for 2, 4, 6, 8, 16, layers from top to
bottom for MultiGCN, SC and ResNet

Graph convolutional networks modifications

4.4. Orthogonalization of weights

In order to preserve the rank of weight matrices on each
layer, we apply the weight orthogonalization procedure. We
tried two main approaches: initializing the weights as an
orthogonal matrix, and modifying the loss in order to force
the orthogonality.

To conduct the experiment we initialized each weight W l

with random orthogonal matrix, trained the network and
compared the accuracy with the deafault implementation
which uses uniform distribution to initialize each element of
matrix independently. As for vectors the notion of orthogo-
nality does not make any sense, biases in the network are
initialized with element-wise uniform distribution scaled by
the number of features in the current layer.

The accuracy was compared on three main datasets de-
scribed above. The results are presented in table 2. It is
immediately obvious that initialization does not help train
better shallow networks. While it may seem that orthogonal
initialization helps in deeper networks, the fact that the stan-
dard deviation of these results is ≈ 15% for networks with
10 and 16 layers makes the results insignificant.

Table presents result when orthogonal weight regularizer has
been used. It seems that on shallow networks it can be useful
as the results are better and the resulting variance is small.
Note that adding orthogonal initialization in conjunction
with weight forcing does not improve results.

Table 2. Ablation study for orthogonal initialization. init indicates
results for model with orthogonal initialization. no init results with
uniform initialization. Accuracy on test set is reported in percent.
Standard deviation of results for 10 and 16 layers is ≈ 15%.

Citeseer Cora Pubmed
layers init no init init no init init no init
2 56.3 77.6 86.3 85.8 89.9 75.2
4 52.3 56.2 80 79.3 79.8 89.5
8 28.7 26.9 31.9 31.9 86.1 83.1
10 26.8 27.3 31.9 31.9 88.1 81.1
16 30.1 29 31.9 31.9 75.9 68.6

Table 3. Orthogonal weight forcing. force indicates model with
weight forcing. force + init — results with weight forcing and or-
thogonal initilaization. Accuracy on test set is reported in percent.

layers force force + init
3 85.5 85.5
4 84.0 83.9

4.5. Skip connection

Skip GCN network effectively is a modification of Multi-
GCN network. For the regular Skip Connection (SC) the
output layer is changed into the combination of two linear

Figure 8. Comparison of accuracy for InOut SC, SC and ResNet

layers with ReLU. The outputs of each hidden layer are
concatenated into the one tensor which is later provided
to the output layer which has the aforementioned structure.
For the InOut SC the structure is the same, but the output
layer is only provided the original input and the output of
the last hidden layer. The results of the implementation
of skip connections were promising, as we were able to
achieve accuracy not lower than the original architecture,
but also allowed the construction of the deeper architectures
with much lesser weight saturation. The accuracies are illus-
trated in 6 One can observe that the InOut skip connection
achievs the top accuracy already on 50th-60th epoch, while
the vanilla MultiGCN and SC require at least a 100 epochs.
Skip connections also allow for the stabler gradients which
vanish much slower (7). Final comparison in accuracy be-
tween the two implementations of SC and pre-implemented
ResNet can be seen in 8. This figure illustrates that, al-
though our implementations of SC start to degrade a little
faster, the top accuracy is a bit better than the ResNet.

4.6. Skip connection and orthogonal initialization

4.6.1. TRUNCATED SVD APPLICATION

The experiment was conducted on SkipGCN with default
parameters. Only number of layers was varied.

For each rinp from 1 to rank of the input layer size and rmid

from 1 to rank of the middle layer sizes, truncated SVD was
applied to corresponding layers weights and their self-loop
weights. Then, accuracy was evaluated on the test set.

While more experiments should be conducted, results on
Figure 9 are promising. Each plot corresponds to each r1;
the points of it are accuracies with chosen ranks of rinp and
rmid.

Often the better accuracy is achieved with lower rank the
original, even much lower such as rank rmid = 3 instead of
original 128 for all hidden layers (e.g in case of 10 layers).
Application of truncated SVD with small rank also reduces
used memory and inference time.

4.7. Spectral normalization

To conduct experiments with spectral normalization we
modified the training procedure of DropEdge to divide the
weight matrix by the largest singular value during each iter-

Graph convolutional networks modifications

Figure 9. Accuracy of SkipGCN with TruncatedSVD applied to
weights.

ation. The model is firstly trained on pubmed dataset. Initial
results showed that the network is unable to train completely
after this modification. The division procedure was changed
to be performed once every epoch with no success as initial
division brought many singular values of weights close to
zero, so that most dimensions became useless after normal-
ization. We do not report any score as it is no better than a
random baseline.

5. Conclusion
This report has reviewed several techniques to improve gen-
eralization ability of deep graph convolutional networks. We
have found that skip connections showed great potential in
enabling the graph convolutional networks to be built deeper
and stay stable for increased number of layers. A specific
implementation of SC, mainly InOut SC also showed an
increase in the training time, as it was able to achieve the top
results for the architecture on a smaller number of epochs.
Truncated SVD also showed promising results and allowed
to increase accuracy for the shallow network, but it failed
to produce sustainable results for deeper networks. Addi-
tionally, our results suggest that orthogonal initialization of
weights and spectral normalization are not applicable to the
current problem as they did not yield as promising results
as were expected.

Overall, the obtained results are a solid ground for future
research, as they provide a stable starting point for the fur-
ther exploration of the problem. They do not, however,
solve it fully, but rather show a few small but noticeable
improvements.

Graph convolutional networks modifications

A. Team member’s contributions
Explicitly stated contributions of each team member to the
final project.

Mikhail Salnikov (20% of work)

• Reviewing literate on the main topics.

• Experiments with truncated SVD and fine tuning after
truncated SVD.

• Implementation and experiments with orthogonal forc-
ing.

• Implementation and experiments with orthogonal
weights initialization.

• Unsuccessfully experiments with Singular Normaliza-
tion.

Anastasia Remizova(20% of work)

• Analyzed literature on graph convolutional networks.

• Implemented TruncatedSVD layer.

• Evaluated properties of TruncatedSVD application to
networks.

• Applied TruncatedSVD techniques to GCN with skip
connection.

Aleksei Kalinov(20% of work)

• Analyzed literature on initialization, weight orthogo-
nalization and spectral normalization in networks.

• Implemented orthogonal initialization for DropEdge.

• Implemented an automated system to run experiments
for orthogonal initialization and skip connections on
three datasets, to extract the results and to present them
in a human-readable format.

• Conducting experiments for orthogonal initialization
with different hyperparameters.

• Writing “Related work”, “Weight orthogonalizaion”
and “Spectral normalization” parts of the report.

• Unsuccessfully attempted to run experiments with
Lanczos Network from authors’ Github repository.

Mark Griguletskii(20% of work)

• Implemented Skip Connection algorithm with vanilla
GCN.

• Implemented InOut Skip Connection algorithm.

• Made all plots dedicated to Skip Connection part of
project.

• Reviewed literature, got lots of new knowledge.

Igor Markov(20% of work)

• Implemented Skip Connection with GCN.

• Conducted experiments on comparing Skip Connection
and InOut SC performance with vanilla GCN with
various parameters

• Analyzed existing literature and implementations of
Skip Connection in Graph Convolutional Networks

• Unsuccessfully tried to reproduce the method of build-
ing deep GCNs found online in https://github.
com/lightaime/deep_gcns_torch

• Analyzed articles on GCNs.

• Recorded the video of presentation.

• Worked on the report.

https://github.com/lightaime/deep_gcns_torch
https://github.com/lightaime/deep_gcns_torch

Graph convolutional networks modifications

B. Reproducibility checklist
Answer the questions of following reproducibility checklist.
If necessary, you may leave a comment.

1. A ready code was used in this project, e.g. for repli-
cation project the code from the corresponding paper
was used.

� Yes.
� No.
� Not applicable.

General comment: If the answer is yes, students must
explicitly clarify to which extent (e.g. which percent-
age of your code did you write on your own?) and
which code was used.

Students’ comment:

2. A clear description of the mathematical setting, algo-
rithm, and/or model is included in the report.

� Yes.
� No.
� Not applicable.

Students’ comment: We base our research on an ex-
isting architecture DropEdge, which we referenced
throughout the report.

3. A link to a downloadable source code, with specifica-
tion of all dependencies, including external libraries is
included in the report.

� Yes.
� No.
� Not applicable.

Students’ comment: See Models & Algorithms sec-
tion.

4. A complete description of the data collection process,
including sample size, is included in the report.

� Yes.
� No.
� Not applicable.

Students’ comment: See Dataset section.

5. A link to a downloadable version of the dataset or
simulation environment is included in the report.

� Yes.
� No.
� Not applicable.

Students’ comment: See Datasets section.

6. An explanation of any data that were excluded, de-
scription of any pre-processing step are included in the
report.

� Yes.
� No.
� Not applicable.

Students’ comment: None

7. An explanation of how samples were allocated for
training, validation and testing is included in the report.

� Yes.
� No.
� Not applicable.

Students’ comment: As we base our research on ex-
isting experiments on popular datasets, the training,
validation and testing samples were allocated by origi-
nal authors.

8. The range of hyper-parameters considered, method
to select the best hyper-parameter configuration, and
specification of all hyper-parameters used to generate
results are included in the report.

� Yes.
� No.
� Not applicable.

Students’ comment: None

9. The exact number of evaluation runs is included.

� Yes.
� No.
� Not applicable.

Students’ comment: See Training Parameters sec-
tion.

10. A description of how experiments have been conducted
is included.

� Yes.
� No.
� Not applicable.

Students’ comment: See Experiments section.

11. A clear definition of the specific measure or statistics
used to report results is included in the report.

� Yes.
� No.
� Not applicable.

Students’ comment: Accuracy metric is self-
explanatory, for gradient norm see Skip Connection
section.

Graph convolutional networks modifications

12. Clearly defined error bars are included in the report.

� Yes.
� No.
� Not applicable.

Students’ comment: See Orthogonalization section.

13. A description of the computing infrastructure used is
included in the report.

� Yes.
� No.
� Not applicable.

Students’ comment: See Datasets section.

References
Brock, A., Lim, T., Ritchie, J. M., and Weston, N. Neu-

ral photo editing with introspective adversarial networks.
arXiv preprint arXiv:1609.07093, 2016.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spec-
tral networks and locally connected networks on graphs.
arXiv preprint arXiv:1312.6203, 2013.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive
representation learning on large graphs. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R. (eds.),
Advances in Neural Information Processing Sys-
tems 30, pp. 1024–1034. Curran Associates, Inc.,
2017. URL http://papers.nips.cc/paper/
6703-inductive-representation-learning-on-large-graphs.
pdf.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition, 2015.

Hu, W., Xiao, L., and Pennington, J. Provable benefit of or-
thogonal initialization in optimizing deep linear networks.
arXiv preprint arXiv:2001.05992, 2020.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks.
arXiv preprint arXiv:1802.05957, 2018.

Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge:
Towards deep graph convolutional networks on node
classification. In International Conference on Learning
Representations, 2020. URL https://openreview.
net/forum?id=Hkx1qkrKPr.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact
solutions to the nonlinear dynamics of learning in deep
linear neural networks. arXiv preprint arXiv:1312.6120,
2013.

Vorontsov, E., Trabelsi, C., Kadoury, S., and Pal, C. On
orthogonality and learning recurrent networks with long
term dependencies. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pp.
3570–3578. JMLR. org, 2017.

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S. S.,
and Pennington, J. Dynamical isometry and a mean field
theory of cnns: How to train 10,000-layer vanilla convolu-
tional neural networks. arXiv preprint arXiv:1806.05393,
2018.

http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=Hkx1qkrKPr

